Discussion: Learning About Fed Policy From Macro Announcements: A Tale of Two FOMC Days

by Zohair Alam

Leyla Han, Boston University

WFA 2024

Summary of the Paper

- Decompose FOMC days into two sets: preceded with and without macro announcements
- Two Main Empirical Facts
 - Reexamine existing evidence around FOMC announcements
 - announcement premium, pre-FOMC drift, upward sloping security market line, etc. only present when preceded by macro announcements
 - Predictability of FOMC announcement returns
 - by federal funds futures rate changes on macro announcement days
 - by cumulative return from macro announcement day to FOMC day
 - no predictability on other days
- Other evidence: e.g., secular decline in interest rate, predictable MPS, Fed info effect, etc.
- A model where investors learn about subsequent Fed policy from macro announcement

Main Comments: Outline

- Extremely interesting set of empirical evidence
- Comment 0: Empirical evidence should be organized around a coherent story
- Comment 1: A risk premium based interpretation of FOMC announcement premium following macro announcements
 - Investors are uncertain about Fed's response function
- Comment 2: Interpretation of predictability of FOMC announcement returns
 - risk premium?
 - biased belief?

Summary of Empirical Evidence I

- Literature: FOMC day return is 23.5 bps (Savor-Wilson, 2014); pre-FOMC drift is 49 bps (Lucca-Moench, 2015)
- This paper: Both are present only within 5 days following major macro announcements (GDP, unemployment, CPI, Industrial production)

	Same Day	1 Day	2 Days	3 Days	4 Days	5 Days	
Panel A. FOMC announcement premium							
Macro	0.32**	0.35**	0.33**	0.23**	0.20**	0.19**	
	(0.14)	(0.14)	(0.13)	(0.09)	(0.09)	(0.08)	
NoMacro	0.11	0.08	0.01	-0.00	-0.01	0.00	
	(0.08)	(0.08)	(0.08)	(0.11)	(0.11)	(0.14)	
Panel B. Pre-FOMC drift							
Macro	0.26**	0.29**	0.32***	0.29***	0.24***	0.25***	
	(0.11)	(0.11)	(0.09)	(0.07)	(0.07)	(0.06)	
NoMacro	0.20***	0.19***	0.13*	0.06	0.12	0.05	
	(0.07)	(0.07)	(0.07)	(0.11)	(0.12)	(0.14)	

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

Summary of Empirical Evidence I

- Literature: SML is upward sloping on FOMC days (Savor-Wilson, 2014)
- This paper: only preceded with macro announcements

Comment 1: A Risk Premium Based Interpretation

- This paper: Investors learn from macro announcements about Fed policy
- It is not clear why learning can explain the first empirical evidence
- Suggestion 1: I propose a risk premium based model for FOMC premium preceded by macro announcements (Ai-Bansal, 2018; Ai-Han-Xu, 2022)

Suggestion 1: A Risk Premium Based Interpretation

- A simple model where investors are uncertain about Fed's response function (Bauer-Swanson, 2022)
- Consider the case where the monetary policy follows a Taylor rule:

$$=\phi y + \epsilon \tag{1}$$

where ϕ is the Fed's response function, y is the output gap. Assume $\epsilon = 0$.

• At time T (FOMC), Fed makes interest rate decision based on their best info about y:

$$i_{\mathcal{T}} = \phi \mathbb{E}_t[y] \tag{2}$$

 If no uncertainty about φ, there is no monetary policy uncertainty, therefore, no announcement premium.

The Case Without Macro Announcement

- Now assume the market does not know φ, which is a random variable where Var[φ] = σ². Suppose output gap y ~ N (ȳ, τ²).
- Two Cases:
- Case 1: There is no macro announcement at time t < T:
 - $\mathbb{E}_t[y] = \bar{y} \Longrightarrow i_T = \phi \bar{y}.$
 - The monetary policy uncertainty of i_T is

$$Var_t[i_T] = Var_t[\phi \bar{y}] = \bar{y}^2 \sigma^2.$$
(3)

• Average risk premium is proportional to $\bar{y}^2 \sigma^2$.

The Case With Macro Announcement

• Case 2: There is a macro announcement at time t < T:

- Assume the macro announcement fully reveals the true value of y, i.e., $\mathbb{E}_t[y] = y \Rightarrow i_T = \phi y$
- Monetary policy uncertainty of i_T is

$$Var_t[i_T] = Var_t[\phi y] = y^2 \sigma^2.$$
(4)

• If we have many macro announcements, the average risk premium will be proportional to

$$\mathbb{E}[y^2\sigma^2] = (\bar{y}^2 + \tau^2)\sigma^2 \tag{5}$$

• which is higher than Case 1 $(\bar{y}^2\sigma^2)$ when there is no macro announcement.

Intuition

- Intuition:
 - Suppose mkt has uncertainty about Fed's response function
 - If there is no macro announcement, mkt knows that Fed would not respond.
 - But if there is macro news, mkt knows that Fed is going to respond to macro conditions.
 - However, mkt is uncertain about how much the Fed is going to respond. This adds up to the monetary policy uncertainty, which is associated with a higher risk premium.
- Also consistent with this paper's empirical evidence where FOMC announcement premium is higher when the level of VIX is higher (i.e., τ or σ is higher)

Summary of Empirical Evidence II: FOMC Return predictability

• Federal funds futures rate changes on macro announcement days can predict both FOMC returns and pre-FOMC drift.

	Pre-FOMC Drift	Annoucement Premium
ΔFFR_t	0.96	1.04
	(1.44)	(0.84)
$\Delta \textit{FFR}_t imes 1^{macro}$	-18.07***	-19.26***
	(5.84)	(5.98)
$\Delta \textit{FFR}_t imes 1^{macro} imes \textit{Days}$	7.03**	6.18***
	(3.10)	(1.99)

• This paper: a reduction in federal funds rate expectations is associated with a positive announcement return

Comment 2: Interpretation of Return Predictability

- How to interpret FOMC return predictability?
- Two explanations from the literature
 - Risk premium
 - Liu-Tang-Zhou (2022): option price based measure of risk premium
 - Ai-Han-Xu (2022): informativeness based measure
 - Biased beliefs
 - Bauer-Swanson (2022): mkt's misperception of the Fed's reaction function to macro news
- Suggestion 2: examine if the evidence is consistent with either or both of them

Conclusion

- An extremely interesting set of empirical evidence
- New evidence on connections between macro announcements and FOMC announcements
- Organize the evidence around one coherent story
- Elaborate more clearly on the economic mechanism